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Abstract
The structure of the observable algebra O� of lattice QCD in the Hamiltonian
approach is investigated. As was shown earlier, O� is isomorphic to the tensor
product of a gluonic C∗-subalgebra, built from gauge fields and a hadronic
subalgebra constructed from gauge-invariant combinations of quark fields. The
gluonic component is isomorphic to a standard CCR algebra over the group
manifold SU(3). The structure of the hadronic part, as presented in terms of
a number of generators and relations, is studied in detail. It is shown that its
irreducible representations are classified by triality. Using this, it is proved that
the hadronic algebra is isomorphic to the commutant of the triality operator in
the enveloping algebra of the Lie superalgebra sl(1/n) (factorized by a certain
ideal).

PACS number: 12.38.−t

1. Introduction

During the last decades, quantum chromodynamics (QCD) has become one of the basic
building blocks of the standard model for describing elementary particle interactions. It was
quite successful, e.g. in describing deep inelastic scattering processes within perturbation
theory on the one hand and ‘measuring’ certain types of observables using (nonperturbative)
lattice approximation techniques on the other hand; see [1–3] for pioneering work in this
direction. We stress that also within the programme of constructive quantum gauge field
theory, lattice methods are of fundamental importance; see [4] and references therein.

Despite all efforts made, we are still facing a basic challenge, which consists of
constructing an effective microscopic theory of interacting hadrons out of QCD. This is
certainly a nonperturbative problem. To solve it, in our opinion, one should start with a

0305-4470/05/235359+19$30.00 © 2005 IOP Publishing Ltd Printed in the UK 5359

http://dx.doi.org/10.1088/0305-4470/38/23/020
http://stacks.iop.org/ja/38/5359


5360 P D Jarvis et al

careful analysis of the concept of observables. The lattice approximation seems to be an
ideal intermediate step for that purpose. (Finally, of course, one would like to construct
the continuum limit—an extraordinarily complicated problem of constructive quantum field
theory.) To be rigorous, we have put QCD on a finite (regular cubic) lattice and we have
started investigating it in the Hamiltonian approach, see [5, 6].

In [5] we have analysed the structure of the field algebra of QCD and the Gauss law.
Comparing with quantum electrodynamics (QED), in QCD the local Gauss law is neither
built from gauge-invariant operators nor is it linear. But it is possible to extract a gauge
invariant, additive law for operators with eigenvalues in the dual of the centre of SU(3),
(which is identified with Z3). This implies—as in QED—a gauge-invariant conservation law:
the global Z3-valued colour charge (triality) is equal to a Z3-valued gauge-invariant quantity
obtained from the colour electric flux at infinity. We stress that the notion of triality occurred
in the literature a long time ago. On the level of lattice gauge theories, this notion is already
implicitly contained in a paper by Kogut and Susskind, see [2]. In particular, Mack [7] used
it to propose a certain (heuristic) scheme of colour screening and quark confinement, based
upon a dynamical Higgs mechanism with Higgs fields built from gluons. For similar ideas we
also refer to papers by ’t Hooft, see [8] and references therein, and Cornwall, see [9]. There
is a whole series of papers by the latter author, where the centre vortex idea has been further
developed, see [10] and references therein. The triality concept was also used in a paper by
Borgs and Seiler [11] on the confinement problem for Yang–Mills theories with static quark
sources at nonzero temperature. In this context, also the Gauss law for colour charge was
analysed.

In [6] we analysed the observable algebra of QCD in the above context. The C∗-algebra
Oi

� of physical observables, internal relative to � is, by definition, the algebra of gauge-
invariant fields, with the Gauss law imposed. In order to take into account correlations with
the ‘rest of the world’, one has to supplement Oi

� by the algebra O∞
� of gauge-invariant

elements at infinity. The full algebra of observables O� is the tensor product of these two
pieces. In [6] we have shown that there are three inequivalent representations of O� labelled
by global colour charge. It turns out that O� is isomorphic to the tensor product of a gluonic
C∗-subalgebra, built from lattice gauge fields and a hadronic subalgebra constructed from
gauge-invariant combinations of quark fields. The gluonic component is isomorphic to a
standard CCR algebra over the group manifold SU(3), whereas the hadronic subalgebra Omat

T
is built from bilinear and trilinear gauge-invariant combinations of the quark fields.

The present paper is a continuation of [5] and [6]. It is motivated by the following
points.

(i) For purposes of quantum theory, one needs a complete presentation of O� in terms of
generators and relations. Thus, we present a complete analysis of the structure of the
hadronic subalgebra, selecting, in particular, a minimal set of relations.

(ii) The classification of irreducible representations of O� presented in [6] was in abstract
terms. It was a challenge, to prove the same result in the language of generators and
relations. Here, we show that this can be done indeed, the key observation being that the
hadronic subalgebra is isomorphic to the commutant of the triality operator in the CAR
algebra generated by n = 12N creation and annihilation operators (N is the number of
lattice sites).

(iii) A similar analysis for (spinorial and scalar) QED has been presented in [14–16]. There,
the matter field part of the observable algebra is generated by a certain Lie algebra, a
fact which should be helpful for constructing the thermodynamical limit in the future.
Does a similar structure occur in QCD too? Here, we prove that the hadronic subalgebra
is generated, in a certain sense, by a standard Lie superalgebra. Moreover, in this
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language, the three inequivalent representations naturally arise via a standard Kac module
construction.

The presentation of O� used in this paper is based upon a certain gauge fixing procedure,
which works well on the generic stratum of the action of the gauge group on the underlying
classical configuration space. First steps towards including non-generic strata have been made
as well [12]. It is worthwile to try to omit the gauge fixing philosophy and to analyse O� in
more intrinsic terms. This leads to polynomial superalgebras, see [13].

Finally, we note that standard methods from algebraic quantum field theory for models
which do not contain massless particles, see [17], do not apply here. For an analysis of problems
with massless particles within this approach we refer to [18–23] and further references therein.

Our paper is organized as follows: In section 2, we briefly summarize the results of
[5, 6]. In subsection 3.1, we present a systematic study of the hadronic subalgebra Omat

T in
terms of generators and relations. Next, in subsection 3.2, we reduce the set of relations
to a certain minimal set and in subsection 3.3 we present a classification of irreducible
representations of Omat

T . Finally, in subsection 3.4, the above-mentioned super Lie structure
is presented.

2. The full observable algebra

Here, we briefly summarize the results of [5, 6].
We consider QCD in the Hamiltonian framework on a finite regular cubic lattice � ⊂ Z

3,
with Z

3 being the infinite regular lattice in three dimensions. We denote the lattice boundary by
∂� and the set of oriented, j -dimensional elements of �, respectively ∂�, by �j , respectively
∂�j , where j = 0, 1, 2, 3. Such elements are (in increasing order of j ) called sites, links,
plaquettes and cubes. Moreover, we denote the set of external links connecting boundary sites
of � with ‘the rest of the world’ by �1

∞ and the set of endpoints of external links at infinity by
�0

∞. Assume that for each boundary site there is exactly one link with infinity. Then, external
links are labelled by boundary sites and we can denote them by (x,∞) with x ∈ ∂�0.

The basic fields of lattice QCD are quarks ψaA, together with their conjugates ψaA∗, living
at lattice sites, and gluonic gauge potentials UA

B, together with their conjugate momenta
EA

B (colour electric fields), living on links (including links connecting the lattice under
consideration with ‘infinity’). Here, a stands for bispinorial and (possibly) flavour degrees of
freedom and A,B, . . . = 1, 2, 3 denote the colour index. For these generators, the canonical
(anti)-commutation relations are postulated. Moreover, the generators fulfil further relations
according to their algebraic nature. In [5, 6], we have analysed the structure of the field algebra
A�, defined by these generators and relations, in detail. Moreover, we have shown that A�

has a unique (up to unitary equivalence) irreducible representation (generalized Schrödinger
representation). Via this representation, the field algebra A� can be identified with the algebra
K(H�) of compact operators on the Hilbert space

H� = F(C12N) ⊗ L2(C, µ). (2.1)

Here, F(C12N) deotes the fermionic Fock space generated by 12N anti-commuting pairs of
quark fields and

C :=
∏

(x,y)∈�1

C(x,y)

∏
x∈∂�0

C(x,∞),

with C(x,y) being diffeomorphic to the group space G(µ is the product of Haar measures).
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The group of local gauge transformations G� related to the lattice � consists of mappings
�0 � x → g(x) ∈ G, which represent internal gauge transformations, and of gauge
transformations at infinity, �0

∞ � z → g(z) ∈ G. Thus,

G� := Gi × G∞ =
∏
x∈�0

Gx

∏
z∈�0∞

Gz, (2.2)

with Gy
∼= SU(3), for every y. This group acts by automorphisms on the field algebra A�.

Imposing gauge invariance on physical states yields the following local Gauss law at x ∈ �0 :∑
y↔x

EA
B(x, y) = ρA

B(x), (2.3)

where ρA
B(x) is the local matter charge at x. In [5] we have shown that, for every integrable

representation F of su(3), there exists a Z3-valued operator function F → ϕ(F ), which is
additive:

ϕ(F + G) = ϕ(F ) + ϕ(G), (2.4)

for all F and G commuting. Here, Z3
∼= {−1, 0, 1} stands for the group of characters on the

centre Z of SU(3). Of course, any F can be decomposed into its irreducible components. If F
is irreducible, characterized by highest weight (m, n), one gets

ϕ(F ) = (m − n) mod 3. (2.5)

Applying ϕ to the local Gauss law (2.3) at every lattice point and taking the sum over all lattice
sites, we get the global Gauss law

�∂� = t�. (2.6)

Here, �∂� = ∑
x∈∂� ϕ(E(x,∞)) is the total flux through the boundary ∂� and t� =∑

x∈� ϕ(ρ(x)) is the (gauge-invariant) global colour charge (triality), carried by the matter
field.

The C∗-algebra Oi
� of physical observables, internal relative to � is, by definition, the

algebra of gauge-invariant fields, with the Gauss law imposed. This means that we take the
subalgebra of G�-invariant elements of A� and factorize it with respect to the ideal generated
by local Gauss laws at all lattice sites. In order to take into account correlations with the ‘rest
of the world’, one has to supplement Oi

� by the algebra O∞
� of gauge-invariant elements at

infinity, yielding the full algebra of observables:

O�
∼= Oi

� ⊗ O∞
� . (2.7)

In [6] we have analysed the structure of O� in detail. The main result of this paper was the
proof that there are three inequivalent representations of O� labelled by values of the global
flux �∂�. By the global Gauss law (2.6), these inequivalent representations can be labelled by
eigenvalues of global colour charge t�.

Fur purposes of quantum theory one needs, of course, an explicit presentation of O� in
terms of generators and relations. The algebra O∞

� is generated by operations of tensorizing
or contracting with SU(3)-invariant tensors δA

B, εABC and εABC , and by operators P (m,n)

projecting onto irreducible subspaces of the physical Hilbert space at infinity of valence
(m, n), see [6]. Thus, one has to find a complete set of generators of Oi

�. In [6] we have
shown the following:

Theorem 2.1. The observable algebra Oi
� is generated by the following gauge-invariant

elements (together with their conjugates):

Uγ := UA
γA (2.8)
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Eγ (x, y) := UA
γBEB

A(x, y) (2.9)

J ab
γ (x, y) := ψ∗a

A(x)UA
γBψbB(y) (2.10)

Wabc
αβγ (x, y, z) := 1

6εABCUA
αDUB

βEUC
γF ψaD(x)ψbE(y)ψcF (z), (2.11)

with γ denoting an arbitrary closed lattice path in formula (2.8), a closed lattice path starting
and ending at x in (2.9) and a path from x to y in (2.10). In formula (2.11), α, β and γ are
paths starting at some reference point t and ending at x, y and z, respectively. In formula
(2.9), both x and y stand also for ∞.

Note that the observables J ab
γ and Wabc

αβγ represent hadronic matter of mesonic and baryonic
type.

The above set of generators is, however, highly redundant. In a first step, it can be
reduced by using the concept of a lattice tree. As a result, one obtains a presentation of the
observable algebra in terms of tree data, which are still subject to gauge transformations at the
(arbitrarily chosen) tree root. Finally, this gauge freedom has to be removed. This reduction
procedure has been discussed in detail in [6]. The second step leads to delicate problems
(Gribov problem and the occurrence of nongeneric strata), which suggest that one should
investigate the stratified structure of the underlying classical configuration (resp. phase) space
in more detail. See [12] for first results.

As a result of this reduction, the observable algebra O� is obtained as

O� = O
glu
T ⊗ Omat

T ⊗ Ob
� ⊗ O∞

� . (2.12)

Here, the gluonic component O
glu
T is generated by reduced gluonic tree data (ui , ei ), i =

0, . . . , K − 2, with K denoting the number of off-tree lattice links. These bosonic generators
satisfy the generalized canonical commutation relations over G:[

er
i s , e

p

j q

] = δij

(
δp

se
r
i q − δr

qe
p

i s

)
, (2.13)[

er
i s , u

p

j q

] = δij

(
δp

su
r
i q − 1

3δr
su

p

i q

)
, (2.14)[

ur
i s , u

p

j q

] = 0, (2.15)

with r, s, . . . = 1, 2, 3. The generators (ui , ei ) are subject to a certain discrete symmetry
described in [6] (which, however, is not a remainder of the gauge symmetry).

Applying the above gauge fixing procedure to the fermionic matter field, we obtain
fermionic operators φk . Here, k = (a, r, x) is a multi-index running from 1 to 12N , with
N being the number of lattice sites. These quantities fulfil the canonical anti-commutation
relations

[φ∗k, φl]+ = δk
l . (2.16)

(We stress that in [6], the generators φk were denoted by ak.) Again, an additional discrete
symmetry arises, because the gauge fixing is defined only up to the stabilizer Z3 of the generic
stratum of the underlying classical configuration space. Thus, strictly speaking, the generators
φk are not observables, whereas the bosonic quantities u and e are, because they are not
affected by this ambiguity. It is clear from classical invariants theory that only the following
combinations of φ∗k and φk (together with functions built from them) are observables:

jk l = φ∗kφl, (2.17)

ik l = φlφ
∗k, (2.18)
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wpqr = φpφqφr, (2.19)

w∗ijk = φ∗kφ∗jφ∗i . (2.20)

We have, of course,

ik l = δk
l1 − jk l . (2.21)

Thus, the matter field component Omat
T is generated by the set {j,w,w∗}, together with the

unit element 1. These generators are observables of hadronic type. Thus, in what follows we
call Omat

T hadronic component of the observable algebra or simply hadronic subalgebra.
Finally, Ob

� is generated by (gauge-invariant) colour electric boundary fluxes and the
generators of O∞

� have been already given above.
By the uniqueness theorem for generalized CCR, fulfilled by generators (ui , ei ), of the

gluonic subalgebra O
glu
T , the problem of classifying irreducible representations of O� is

reduced to classifying irreducible representations of the hadronic subalgebra Omat
T . For that

purpose, the structure of this algebra will be investigated in the following.

3. Structure of the hadronic subalgebra

3.1. Generators and relations

We start analysing Omat
T by listing relations implied from definitions (2.17)–(2.20).

First, note that Omat
T is a unital ∗-algebra, with unit element 1 and ∗-operation given by

(
jk l

)∗ = jl k, (3.1)

(wpqr )
∗ = w∗rqp, (3.2)

(w∗ijk)∗ = wijk, (3.3)

where the generators w and w∗ are totally antisymmetric in their indices:

wmkn = wknm = wnmk = −wkmn. (3.4)

Next, the anticommutation relations (2.16) immediately yield[
jk l, j

m
n

] = δm
l j

k
n − δk

n jml, (3.5)[
ji k,wlmn

] = −δi
l wkmn − δi

m wlkn − δi
n wlmk, (3.6)

and, consequently,[
jki ,w

∗lmn
] = δl

i w
∗kmn + δm

i w
∗lkn + δn

i w
∗lmk. (3.7)

Observe that (3.5) are the commutation relations of gl(n, C), with n = 12N . As a direct
consequence of (2.17), these generators fulfil a number of additional quadratic relations:
First, the diagonal generators jkk are idempotent(

jkk

)2 = jkk. (3.8)

Because of the Hermicity condition (3.1) they are, thus, projectors. Commutation relations
(3.5) implies that they all commute with each other.

Finally, products of w and w∗ can be expressed in terms of j’s:

w∗kmn wkmn = jkk jmm jnn, for different k,m, n, (3.9)
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wkmn w∗kmn = ikki
m

minn, for different k,m, n. (3.10)

We recall that

ikk = 1 − jkk, (3.11)

see (2.21). In the next subsection, we are going to prove that the above properties uniquely
characterize the algebra Omat

T .
We show that the triality operator belongs to the centre of the algebra. For this purpose,

note that jkk is the particle number operator at position k. Thus,

n =
n∑

k=1

jkk (3.12)

is the total particle number operator. By definition of t�, we have

t� = ϕ(n). (3.13)

This means that, in any representation, t� is equal to the particle number, modulo 3. As a
direct consequence of (3.5), (3.6) and (3.7), we obtain[

n, jk l

] = 0 (3.14)

[n,w∗ijk] = 3w∗ijk, (3.15)

[n,wpqr ] = −3wpqr . (3.16)

Together with (3.13), these relations imply that all generators and, thus, all hadronic
observables commute with the triality operator t�.

Remark. Due to (3.6), the whole set of baryonic invariants wlmn can be generated from one
chosen wl0m0n0 by successively taking commutators with j’s. Indeed, for i 
= l, commutation
relation (3.6) reduces to the identity

[
jl k,wlmn

] = −wkmn which enables us to ‘flip’ the multi-
index (l,m, n) to any other position. All relations for the remaining w’s then follow from the
relations for the single selected element wl0m0n0 .

3.2. Axiomatic description

Consider now the abstract, unital ∗-algebra A, generated by abstract elements j,w and w∗,
which fulfil relations (3.1)–(3.10). In the following, we shall prove that these relations define
the algebra uniquely, i.e. A is identical with the previously defined algebra Omat

T . For this
purpose, we derive from the defining relations of A a number of additional identities.

Theorem 3.1. The defining relations (3.1)–(3.10) of A imply the following additional
identities:

1.

jml j
k
l = δk

l j
m

l, (3.17)

jkl j
k
n = δk

l j
k
n. (3.18)

Thus, in particular, the off-diagonal generators are nilpotent:(
jk l

)2 = 0 for k 
= l. (3.19)
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2.

ji k wlmn = −ji l wkmn = −jim wlkn = −ji n wlmk. (3.20)

w∗lmn jki = −w∗kmn jl i = −w∗lkn jmi = −w∗lmk jni . (3.21)

In particular, ji k multiplied with w vanishes, if at least one of the indices of w coincides
with k, e.g.

jkl wlmn = 0, w∗lmn jl k = 0. (3.22)

3. The following identities hold:

jl l wlmn = 0 = wlmni
l
l (3.23)

il l wlmn = wlmn = wlmn jl l (3.24)

w∗lmn jl l = 0 = il l w
∗lmn (3.25)

w∗lmnil l = w∗lmn = il l w
∗lmn. (3.26)

4. The generators w and w∗ are nilpotent:

(w∗ijk)2 = 0, (3.27)

(wpqr )
2 = 0. (3.28)

Proof.

1. To show relations (3.17), we have to prove

jml j
k
l = 0, for k 
= l, (3.29)

jml j
l
l = jml. (3.30)

From (3.5) we get

jkl = [
jkl, j

l
l

] = jk l j
l
l − jl l j

k
l . (3.31)

Multiplying this relation by jl l to the left and using (3.8) yields

jl l j
k
l = jl l j

k
l j

l
l − jl l j

k
l,

or, inserting expression (3.31) for jk l ,

2jl l j
k
l = jl l j

k
l j

l
l = jl l

(
jk l j

l
l − jl l j

k
l

)
jl l = 0.

This proves (3.29) for the case m = l. Consequently, (3.31) reduces to

jkl = jk l j
l
l . (3.32)

This proves relation (3.30). Finally, multiplying (3.30) by jk l to the left and using
jl l j

k
l = 0 yields (3.29) for m 
= l. The proof of relations (3.18) is completely analogous

and, therefore, we omit it here.
2. We show the first relation in (3.20),

ji kwlmn = −ji l wkmn.

First, the commutation relations (3.6) imply

jl l wlmn − wlmn jl l = −wlmn. (3.33)
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Multiplying this equation from both sides by jl l we obtain

jl l wlmn jl l = 0.

Hence, multiplying (3.33) from the left by jl l yields

jl l wlmn = −jl l wlmn,

or jl l wlmn = 0. Multiplying this relation to the left by jk l and using (3.30) yields

jkl wlmn = 0, (3.34)

showing the special case (3.22). Now, multiplying the commutation relations (3.6) to
the left by ji l and using (3.18) together with (3.34) gives δi

l j
i
k wlmn = −δi

l j
i
l wkmn or,

equivalently,

jl k wlmn = −jl l wkmn. (3.35)

Finally, multiplying this equation by ji l and using (3.6), (3.34) and (3.30) yields the proof
of the statement. The proof of the remaining equations contained in (3.20) is identical.

3. First, observe that by (3.34), the auxiliary identity (3.33) reduces to

−wlmn jl l = −wlmn, (3.36)

and, hence, we have wlmni
l
l = 0. This way (3.23) and (3.24) are proved. Acting with the

operator ∗ on both sides we obtain the remaining identities (3.25) and (3.26).
4. Identity (3.23) and (3.24) imply nilpotency of w:

wlmn wlmn = wlmn

(
il l wlmn

) = (
wlmni

l
l

)
wlmn = 0.

Similarly, nilpotency of w∗ follows from the remaining two identities. �

Finally, observe that the idempotency and nilpotency properties (3.8) and (3.19) render
A finite dimensional. To summarize, A is a (finite-dimensional) associative unital ∗-algebra.
It is obtained from the free algebra, generated by elements {j,w,w∗, 1}, by factorizing with
respect to the relations listed above.

For the sake of completeness, we have listed additional interesting identities, see the
appendix, which have to be taken into account, if one wants to build arbitrary monomials in
the generators.

3.3. Irreducible representations

Lemma 3.2. There is at least one nontrivial, faithful irreducible representation of A, for
each eigenvalue −1, 0, 1 of the triality operator t�.

Proof. Take the CAR-algebra C given by

{a∗k, ak|k = 1, 2, . . . , n}, (3.37)

and fulfilling canonical anticommutation relations

[a∗k, al]+ = δk
l . (3.38)
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Denote its unique Hilbert representation space by H and define

jk l = a∗kal , (3.39)

wpqr = apaqar , (3.40)

w∗ijk = a∗ka∗ja∗i . (3.41)

These abstract elements fulfil, of course, all relations of A listed above. Thus, H carries
a representation of A. Since t� commutes with all j’s, w’s and w∗’s, H decomposes into
superselection sectors,

H = H−1 ⊕ H0 ⊕ H1,

corresponding to different eigenvalues of t�. Each of these subspaces is invariant under the
action of j’s, w’s and w∗’s, providing a nontrivial, faithful and irreducible representation of A.

�

Theorem 3.3. Any irreducible, nontrivial representation of A is equivalent to one of the
three irreducible representations provided by lemma 3.2.

For purposes of the proof, let us denote

Eν1,ν2...νn
:= (

j11
)ν1

(
i11

)ν1+1 (
j22

)ν2
(
i22

)ν2+1 · · · (jnn

)νn
(
inn

)νn+1
, (3.42)

where all indices νk assume values 0 or 1 and the summation is meant modulo 2. Since the
i’s and j’s are Hermitian, orthogonal and commuting projectors

{
Eν1,ν2...νn

}
is a family of

Hermitian orthogonal and commuting projectors too. Moreover, we have an obvious

Corollary 3.4. The above projectors sum up to the unit element:⊕
Eν1,ν2...νn

= 1. (3.43)

Lemma 3.5. The following relations hold for arbitrary k 
= l:

1. jkl · Eν1,ν2...νn
= 0 unless νk = 0 and νl = 1.

2. Eν1,ν2...νn
· jk l = 0 unless νk = 1 and νl = 0.

3. For νk = 0 and νl = 1 we have jk l · Eν1,...,νk,...,νl ,...,νn
= Eν1,...,νk+1,...,νl−1,...,νn

· jk l

Proof. The proof follows by direct inspection from the following identities (which are all
simple consequences of (3.17) and (3.18)):

jk l j
l
l j

k
k = 0, jk l j

l
l i

k
k = jk l, jkl i

l
l j

k
k = 0, jk l i

l
l i

k
k = 0

and

jl l j
k
k jk l = 0, jl l i

k
k jk l = 0, il l j

k
k jk l = jk l, il l i

k
k jk l = 0. �

Proof of the theorem. Take such an irreducible representation. Since the triality operator t�

lies in the centre of A, it corresponds to a fixed value of triality. Take any other two irreducible
representations, corresponding to the remaining values of triality. Let us denote these three
representations by Ht , with t = −1, 0, 1. We are going to prove that there exist isomorphisms

Ut : Ht → Ht (3.44)

intertwining the representations Ht with the three CAR representations Ht , defined in
lemma 3.2. This will be accomplished by defining operators

c∗k : Ht → Ht+1
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and

ck : Ht → Ht−1

(with summation modulo 3), fulfilling the CAR and such that equations (3.39)–(3.41) are
satisfied with a’s replaced by c’s. Then, the statement of the theorem is a consequence of the
classical uniqueness theorem for CAR representations.

Let us denote

Hν1,ν2...νn
:= Eν1,ν2...νn

Ht . (3.45)

We obviously have

t�Eν1,ν2...νn
= Eν1,ν2...νn

t� = tEν1,ν2...νn
.

On the other hand, formula (3.13) implies

t�Eν1,ν2...νn
=

(
n∑

i=1

νi mod 3

)
Eν1,ν2...νn

.

Thus, the only non-trivial subspaces are those fulfilling the condition

t =
n∑

i=1

νi mod 3. (3.46)

This fact, together with (3.43), implies

Ht =
⊕

t=∑n
i=1 νi mod3

Hν1,ν2...νn
. (3.47)

Now, lemma 3.5 implies that jk lHν1,ν2...νn
= 0, unless νk = 0 and νl = 1 and that, in

the latter case, jk l maps Hν1,...,νk,...,νl ,...,νn
onto Hν1,...,νk+1,...,νl−1,...,νn

. Observe, that jkl is an
isomorphism of these two Hilbert spaces, with the inverse given by jl k . Indeed, we have:
jl k jk l − jk l j

l
k = jl l − jkk and, consequently,(

jk l

)∗
jk l = jl k jk l = jl l − jkk + jk l j

l
k.

By lemma 3.5, this gives, for νk = 0 and νl = 1,(
jk l

)∗
jk lEν1,...,νk,...,νl ,...,νn

= Eν1,...,νk,...,νl ,...,νn
. (3.48)

Similarly, relations (3.23) imply that wlmnH...,νl ,...,νm,...,νn,... = 0, unless νl = νm = νn = 1
and, in the latter case, it maps H...,νl ,...,νm,...,νn,... onto H...,νl−1,...,νm−1,...,νn−1,.... Observe that,
according to (3.9) and (3.10), wlmn is an isomorphism of these two Hilbert spaces, with the
inverse given by w∗lmn.

Since the representations Ht are non-trivial, there is at least one non-vanishing vector in
at least one of the subspaces Hν1,ν2...νn

, for every Ht . Thus, let us choose three such normalized
vectors and denote them by

|ν1(t), ν2(t) . . . νn(t)〉 ∈ Hν1(t),ν2(t)...νn(t),

where
∑n

i=1 νi(t) mod 3 = t, t = −1, 0, 1. Acting with operators jk l,wlmn and w∗lmn on
each of these three vectors, we obtain, for every t, a normalized vector, say |ν1, ν2 . . . νn〉, in
each of the subspaces H...,νl ,...,νm,...,νn,.... (The information about t is encoded implicitly, see
equation (3.46).) Moreover, we can label the vectors in the representation spaces Hν1,ν2...νn

in
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such a way that the following relations are fulfilled:

jk l|.., νk, .., νl, ..〉 =



σ(k, l) · |.., νk + 1, .., νl − 1, ..〉
if νk = 0, νl = 1,

0 otherwise,

wlmn|.., νl, .., νm, .., νn, ..〉 =



σ(l,m, n) · |.., νl − 1, .., νm − 1, .., νn − 1, ..〉
if νl = νm = νn = 1,

0 otherwise,

w∗lmn|.., νl, .., νm, .., νn, ..〉 =



−σ(l,m, n) · |.., νl + 1, .., νm + 1, .., νn + 1, ..〉
if νl = νm = νn = 0,

0 otherwise,

where

σ(k, l) = (−1)s(k)−s(l),

s(k) =
∑
i<k

νi,

σ (l,m, n) = s(l,m, n)(−1)s(l)+s(m)+s(n),

and s(l,m, n) is the sign of the permutation which is necessary to sort the triple (l,m, n) in
growing order (i.e. s(l,m, n) = 1 if l < m < n, s(l,m, n) = −1 if l < n < m, etc).

We show that this labelling is possible, indeed: we start with three arbitrarily chosen
vectors given by sequences of νi = νi(t), for t = −1, 0, 1. Next, we apply operators jk l,wlmn

and w∗lmn to these vectors and use the above formulae as the definition of the corresponding
vectors on the right-hand side. Now, it remains to prove that this definition does not depend
upon the order of these operations. For this purpose, we use the commutation rules (3.5) and
(3.6). As far as the commutation relations [w,w], [w∗,w] and [w∗,w∗] are concerned, we
can use relations (3.20)–(3.22) to flip the indices of occurring w’s and w∗’s in such a way
that, whenever these objects meet, they have always the same indices. Then, we use relations
(3.9) and (3.10) together with nilpotency properties (3.27) and (3.28). Having done this, the
formula may be checked by inspection.

Because of the irreducibility of the representations Ht , the vectors |ν1(t), ν2(t) . . . νn(t)〉
form (orthogonal) bases in each Ht . Hence, we define the intertwining operator U putting

U |ν1, ν2 . . . νn〉 := (a∗1)ν1(a∗2)ν2 · · · (a∗n)νn |0〉,
where a∗’s are the CAR-creation operators from lemma 3.2 and |0〉 ∈ H is the Fock vacuum.
(The label t has been ommitted.) Then, the operators

c∗ := U−1a∗U

and

c := U−1aU

satisfy the CAR. It is easy to check that they fulfil equations (3.39)–(3.41), with a replaced by
c. This ends the proof. �

This theorem shows that any algebra A generated by abstract elements j,w and w∗,
fulfilling relations (3.1)–(3.10), is isomorphic to the commutant of the triality operator

t = ϕ

(∑
k

a∗kak

)
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in C,

A ∼= t′(C) ⊂ C. (3.49)

This implies the following:

Corollary 3.6. The algebras A and Omat
T are isomorphic.

3.4. Super Lie structure

Formula (3.49) provides us with a simple and nice algebraic characterization of Omat
T .

Nonetheless, since in the case of lattice QED, we have found a Lie algebraic characterization
of the matter field part [15, 16], it is worthwhile to ask whether a similar characterization is
possible in QCD as well. The answer is affirmative, as we show now.

Using an idea of Palev [24], see also Dondi and Jarvis [25], we define the following
operators:

b∗k := φ∗k
√

p − n, (3.50)

bk := √
p − nφk, (3.51)

with p being a positive integer. In what follows we use the following obvious formulae:

φkf (n) = f (n + 1)φk, (3.52)

φ∗kf (n) = f (n − 1)φ∗k, (3.53)

for any operator function f. In terms of the b-operators, the (anti-)commutation relations take
the following form:[

jk l, j
m

n

] = δm
l j

k
n − δk

n jml, (3.54)[
jk l, b

∗i
] = δi

lb
∗k, (3.55)[

jk l, bi

] = −δk
ibl , (3.56)[

b∗k, bl

]
+ = (p − n)δk

l + jk l . (3.57)

This shows that

A := lin.env.{b∗k, bk, j
k
l | k, l = 1, 2, . . . , n} (3.58)

is isomorphic to the Lie superalgebra sl(1/n). In more detail, identifying

ek
l = jk l − 1

N
δk

l n, e0
0 = N

N − 1
p − n, ek

0 = b∗k, e0
k = bk, (3.59)

we obtain the standard (anti-)commutation relations for sl(1/n):[
ek

l, e
m

n

] = δm
le

k
n − δk

ne
m

l,[
e0

0, e
i
0
] = −ei

0,[
e0

0, e
0
i

] = e0
i ,[

ek
l, e

i
0
] = δi

le
k

0 − 1

N
δk

le
i
0,

[
ek

l, e
0
i

] = −δk
ie

0
l +

1

N
δk

le
0
i ,

[
ek

0, e
0
l

]
+ = ek

l +
N − 1

N
δk

le
0

0.
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The even part is isomorphic to gl(n, C),

sl(1/n)0̄ = gl(n, C) = lin.env.
{
ek

l, e
0

0

∣∣ k, l = 1, 2, . . . , n
}
,

and the odd part is given by

sl(1/n)1̄ = lin.env.
{
ek

0, e
0
k

∣∣ k = 1, 2, . . . , n
}
.

Next, observe that

bibjbk =
√

F(n)wijk, (3.60)

with

F(n) = (p − n)(p − 1 − n)(p − 2 − n).

From now on we assume

p = n + 3.

Then F(n) is a positive operator in every representation. Thus, in every representation we can
express the baryonic invariants w in terms of the fermionic operators b:

wijk = F(n)−
1
2 bibjbk. (3.61)

We denote

w̃ijk = bibjbk, (3.62)

and

w̃∗ijk = b∗kb∗jb∗i . (3.63)

For the bosonic part, we implement relations (3.1) and (3.8)(
jk l

)∗ = jl k, (3.64)(
jkk

)2 = jkk. (3.65)

see subsection 3.1. These relations define a Lie ideal I in the enveloping algebra

U (gl(n, C)) ⊂ U(sl(1/n)),

by which we factorize. Moreover, we require that every observable has to commute with the
triality operator. Thus, we have to take the commutant of t in this factor algebra, which we
denote by

L := t′(U(sl(1/n))/I). (3.66)

Theorem 3.7. The associative unital ∗-algebras A and L are isomorphic.

Proof. First, observe that the operations of taking the commutant and of factorizing with
respect to I commute, because t commutes with every jkk.

To prove the above isomorphism, we show that A and L have exactly the same irreducible
representations. For that purpose, recall that sl(1/n) is a basic Lie superalgebra of type I,
which means

sl(1/n)1̄ = sl(1/n)−1 ⊕ sl(1/n)+1, (3.67)

with sl(1/n)−1 and sl(1/n)+1 being two irreducible modules of sl(1/n)0̄
∼= gl(n, C), in

terms of our generators spanned by {bk} and {b∗k}, respectively. It follows from general
representation theory, see [26], that any finite-dimensional irreducible representation of a



On the structure of the observable algebra of QCD on the lattice 5373

basic Lie superalgebra G is obtained from a Kac module. For superalgebras of type I, every
Kac module V (λ) is induced from a highest weight module V0(λ) of the even part G0̄:

V (λ) = IndG
KV0(λ) := U(G) ⊗U(K) V0(λ), (3.68)

where

K = G0̄ ⊕ G1 (3.69)

and U(G) and U(K) denote the enveloping algebras of G and K, respectively. Formula (3.68)
has to be understood as follows: the G0̄-module V0(�) has been extended to a K-module by
putting

G1V0(λ) = 0

and one has to identify elements

k ⊗ v = 1 ⊗ k(v),

for k ∈ K and v ∈ V0(λ). Then the induced representation of G is defined by

g(u ⊗ v) := gu ⊗ v, (3.70)

for g ∈ G, u ∈ U (G) and v ∈ V0(λ). We stress that V (λ) is not always simple. In that case,
one has to factorize by a certain maximal submodule, to obtain an irreducible representation.

Now, let V0(λ) be a highest weight module of G0̄ = gl(n, C). Since in our case
[G−1,G−1]+ = 0, we have

V (λ) ∼= �(G−1) ⊗ V0(λ), (3.71)

with

�(G−1) =
n⊕

k=0

�k (G−1)

denoting the exterior algebra of G1. Thus, in terms of generators, we have

V (λ) ∼=
⊕

1<k1<···<kn�n

bk1 · · · bkn
V0(λ). (3.72)

We show that taking the above commutant and factorizing with respect to I reduces the set of
irreducible representations to three inequivalent representations labelled by triality.

First, in the commutant of t, only monomials in b and b∗ built from w̃ and w̃∗ can occur.
Thus, V (λ) takes the form

V (λ) ∼=
⊕

1<i1<j1<k1<···<in<jn<kn�N

w̃i1j1k1 · · · w̃injnkn
V0(λ). (3.73)

Since the w̃’s act transitively on this direct sum, V (λ) is an irreducible module. Moreover, as
a direct consequence of the commutation relations we have[

n, jk l

] = 0, (3.74)

[n, w̃∗ijk] = 3 w̃∗ijk, (3.75)

[n, w̃pqr ] = −3 w̃pqr . (3.76)

Thus, in any representation, w̃pqr lowers the particle number by 3, whereas w̃∗ijk raises it
by 3.

Next, by (3.65) the particle number operator jkk at position k can take only eigenvalues
0 and 1, on any highest weight module V0(λ) of gl(n, C). Every highest weight module of
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gl(n, C) is built—by taking tensor products—from fundamental representations, which in turn
are all isomorphic to some exterior product �l(Cn). But, whenever we take a tensor product of
such exterior products, which is not antisymmetric, there exists a vector, for which jkk has an
eigenvalues greater than 1. Thus, (3.65) reduces the admissible highest weight modules to the
fundamental ones. Since the operators w̃ lower the particle number by 3, the lowest weight
component of (3.73) can have particle numbers 0, 1 or 2 only. Using the canonical basis of
C

n, an explicit isomorphism intertwining these three representations with the representations
Ht can be written down, as in the proof of theorem 3.3. �

4. Discussion

1. The generators J ab
γ (x, y) and Wabc

αβγ (x, y, z) (see (2.10) and (2.11) are difficult to handle.
This is why we have replaced them by generators jk l and wpqr (see (2.17) and (2.19),
fulfilling much simpler relations. To define these observables we have used a gauge
fixing procedure based upon the choice of a tree. However, it is obvious that the specific
gauge we have chosen is irrelevant for the structure of the algebra, defined by relations
(3.1)–(3.10). Changing the gauge condition does not affect these relations. Thus, there
should exist another, more intrinsic procedure for obtaining this algebra, which does not
rely on gauge fixing.

To make this transparent, assume that we have chosen a tree. Now, instead of fixing
the gauge, we rewrite the operators J and W in terms of fermionic operators parallel
transported to the tree root x0. Denoting these transported operators by ψ̃ , we get

J ab
γ (x, y) = ψ̃∗a

A (x0)U
A
σ Bψ̃bB(x0), (4.1)

with

σ = β ◦ γ ◦ α−1

being the closed path uniquely defined by this parallel transport (α and β are the
unique on-tree paths from x resp. y to x0.) Thus, the operators J acquire a labelling
by (unparametrized) closed paths. Collecting the spinorial index and the point x ∈ � into
a single index u = (a, x) , we get a mapping σ �→ J u

v(σ ). It can be easily checked that
the commutation relations for the quantities J then take the following form:[

J u
v(β), Jw

t (γ )
] = δw

vJ
u
t (β ◦ γ ) − δu

tJ
w

v(γ ◦ β), (4.2)

where ◦ denotes the natural multiplication in the group of (unparametrized) closed paths.
Similarly, the baryonic operators W and W ∗ can be rewritten, acquiring a labelling by
closed paths, σ �→ Wuvw(σ ), σ �→ W ∗uvw(σ ). The anti-commutation relations for W

and W ∗ can be easily worked out, but we omit them here.
2. Now, let us restrict ourselves to on-tree paths in J and W only. It is clear from (4.1)

that for them all on-tree parallel transporters Uσ are equal to 1, yielding quantities
J u

v,Wuvw,W ∗uvw. Thus, the algebra labelled by closed paths descends to an algebra
defined by the following (anti-)commutation relations:[
J u

v, J
w

t

] = δw
vJ

u
t − δu

tJ
w

v, (4.3)

{W ∗(uvw),W(pqr)} = 1
2 (J ·J · δ)(uvw)

(pqr) + 2(J · δ · δ)(uvw)
(pqr) − 6δ(uvw)

(pqr), (4.4)

{W ∗(uvw),W ∗(pqr)} = 0, {W(uvw),W(pqr)} = 0, (4.5)[
J s

t ,W
∗(uvw)

] = δt
uW ∗(svw) + δt

vW ∗(usw) + δt
wW ∗(uvs), (4.6)[

J s
t ,W(pqr)

] = −δs
pW(tqr) − δs

qW(ptr) − δs
rW(pqt), (4.7)
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Here, (J ·J·δ) and (J ·δ ·δ) are the appropriate totally symmetric combinations. Allowing
for cyclic permutations on uvw and pqr, (J ·J · δ) contains a total of 4 × 9 = 36 terms,
(J · δ · δ) contains 9 × 2 = 18 terms and (δ · δ · δ) just 3 × 2 = 6 terms:

(J ·J · δ)(uvw)
(pqr) = (

J u
pJ v

q + J v
pJ u

q + J u
qJ

v
p + J v

qJ
u
p

)
δw

r + · · · ,
(J · δ · δ)(uvw)

(pqr) = J u
p

(
δv

qδ
w

r + δv
rδ

w
q

)
+ · · · , (4.8)

δ(uvw)
(pqr) = δu

p

(
δv

qδ
w

r + δv
rδ

w
q

)
+ · · · .

Obviously, equations (4.3) are the commutation relations of gl(4N, C). The anti-
commutator (4.4) closes on a quadratic polynomial in the enveloping algebra of the even
(Lie) subalgebra gl(4N, C). Thus, we have identified the W and W ∗ as odd generators
of a supersymmetry algebra belonging to a class of ‘polynomial’ superalgebras. Such
‘nonlinear’ extensions of Lie algebras and superalgebras have been recognized in other
contexts in recent literature. An initial investigation of them in the case of generalizations
of gl(4N/1) (or more generally of type I Lie superalgebras) has been given in [13] (see
also the related remarks in the appendix).

We stress that, again by formula (4.1), the full set of operators J and W can be
reconstructed, knowing the generators J u

v,W
uvw,W ∗uvw, together with the Wilson

loops Uσ .

3. Clearly, the quantities J u
v,Wuvw,W ∗uvw constructed under point (2) can be viewed as

obtained from on-tree gauge fixing (putting the parallel transporter on every on-tree link
equal to 1). If we remove the residual gauge freedom (at the root), we can pass to the
quantities jk l,wijk,w

∗pqr used in this paper. In the case of a generic orbit we have
proved (see [6]) that the representation J u

v(β) is ‘sufficiently non-degenerate’, and we
may reduce it to jk l . Actually, this non-degeneracy follows from the non-degeneracy
of the representation of the electric fluxes Eγ (x, y), see (2.9). We expect that there
exist ‘degenerate’ representations, related to non-generic orbits, which do not allow to
extract the representation of the full gl(n, C) Lie algebra. Indeed, the impossibility to fix
the gauge completely on a non-generic orbit (having a non-trivial stabilizer) implies the
impossibility of reconstructing the quantities jk l , because they are not invariant with respect
to the stabilizer. In this case, we expect that the fermions ak carrying the representation
(see formulae (3.37)–(3.40) will be replaced by some ‘anyons’, satisfying (possibly) a
different statistics. A consistent mathematical analysis of such representations of the
observable algebra (if they do exist) together with their physical implications will be one
of our next goals.
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Appendix A. Appendix. Additional relations

Here, we list additional relations, also following from relations (3.1)–(3.10).
First, we have the following so-called characteristic identities:

jk l j
l
m = (n + 1 − n) jkm, (A.1)

(with the sum taken over all l). Next, one can analyse arbitrary higher order monomials,
built from w and w∗. For that purpose, let us introduce the following tensor operators (totally
antisymmetric in both upper and lower indices) built from j’s:

Xi1i2i3
p1p2p3 =

∑
ρ,σ

sgn(ρ) sgn(σ ) jiρ1 pσ1
jiρ2 pσ2

jiρ3 pσ3
, (A.2)

Y i1i2i3
p1p2p3 =

∑
ρ,σ

sgn(ρ) sgn(σ ) jiρ1 pσ1
jiρ2 pσ2

δiρ3 pσ3
, (A.3)

Zi1i2i3
p1p2p3 =

∑
ρ,σ

sgn(ρ) sgn(σ ) jiρ1 pσ1
δiρ2 pσ2

δiρ3 pσ3
. (A.4)

Di1i2i3
p1p2p3 =

∑
ρ,σ

sgn(ρ) sgn(σ )δiρ1 pσ1
δiρ2 pσ2

δiρ3 pσ3
, (A.5)

with sums running over all permutations ρ and σ . Using (2.19) and (2.20), a lengthy but
simple calculation yields

36w∗ijkwpqr = Xijk
pqr + 3Y ijk

pqr + 2Zijk
pqr , (A.6)

36wpqrw
∗ijk = −Xijk

pqr + 6Y ijk
pqr − 11Zijk

pqr + 6Dijk
pqr . (A.7)

Using these relations and keeping in mind the nilpotency properties, one can calculate arbitrary
(even order) polynomials in w and w∗ in terms of the above tensor operators. In particular,
taking the sum of these two relations, we get the following anticommutator for the baryonic
observables:

[w∗ijk,wpqr ]+ = 1
4

(
Y ijk

pqr − Zijk
pqr + 2

3Dijk
pqr

)
. (A.8)

In fact, these relations (A.8) together with (3.5), (3.6), (3.7) and the mutual anticommutativity
of w and w∗ can again be taken as the defining relations for a type of polynomial superalgebra
generalizing gl(12N/1), this time with odd generators of antisymmetric type (see [13] for
details, and also the discussion above).
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